Research course

Planetary Surfaces and Atmospheres

Open University · Planetary and Space Sciences Research Institute - PSSRI

Entry requirements

Prospective PhD candidates should have a minimum 2:1 in a relevant science degree or equivalent qualifications or experience. For planetary geology/geomorphology projects, a geoscience degree is advantageous and some experience in GIS and planetary science is useful, but not essential. For atmospheric modelling or laboratory projects, a physics- or applied mathematics-based degree is advantageous, as is some programming experience, although this is not essential.

Months of entry


Course content

The Planetary Environments Group is home to academic and research staff and about ten PhD students in the Department of Physical Sciences. Our aim is to better understand the variety and evolutionary behaviour of planetary environments from a physical science perspective, where appropriate focussing on aspects related to habitability.

Currently, the group’s research is directed towards the geology and geomorphology of terrestrial planets, and the weather and climate of planetary atmospheres. On the geological side we use remote sensing and planetary mapping techniques, including GIS and photogrammetry as well as terrestrial analogue fieldwork and laboratory and numerical simulation of planetary surface processes.

Our atmospheres research involves computer modelling using a variety of global and mesoscale models, but analysis of spacecraft remote sensing and in situ data also forms a large part of the work. For Mars, the atmosphere and geology strands are interlinked, and several ongoing projects explore surface-atmosphere interaction, or the effects of changing climate on surface processes. At present, much of our work is focussed on Mars and Mercury, but past and present projects have been, and will be, directed to other objects including Venus, large icy bodies, giant planets and even exoplanets.

Current/recent research projects:
  • Studies of dust lifting and dust storms on Mars.
  • Comparative Digital Terrain Analysis studies of Earth, Moon and Mars.
  • Mesoscale modelling of the martian atmosphere.
  • Using Messenger data to understand the geology of Mercury.
  • Investigating possible landing sites for the ExoMars 2018 Rover.

Potential supervisors:

Department specialisms

Modelling of the atmospheres of Mars, Venus and/or giant planets Water, ice and sedimentary processes on Mars Tectonism, geochemistry and volcanism on Mercury Integration and assimilation of planetary data into atmospheric models

Fees and funding

For detailed information on current fees visit: Fees and funding

Qualification and course duration


part time
72 months
full time
48 months


full time
15 months
part time
24 months

Course contact details

Administrative support
+44 (0)1908 659036