Taught course

Business Analytics

University of Bristol · University of Bristol Business School

Entry requirements

An upper second-class undergraduate honours degree or international equivalent in any of the following subjects:

Operational Research, Management Science, Decision science, Mathematics, Statistics, Data Science, Finance (not Accounting and Finance), Economics, Computer Science, Physics, Engineering, Biomedical/Life Sciences.


An upper second-class honours degree or international equivalent in any discipline that includes 65% or above in at least 2 quantitative units. Examples of acceptable units include:

Advanced Maths/ Algebra /Analysis /Bayesian Modelling /Calculus /Complex Functions /Decision Maths /Differential Equations / Ordinary Differential Equations /Discrete Mathematics /Econometrics /Financial Maths /Game Theory /Geometry /Information Theory /Kinematics /Kinetics /Quantum mechanics /Quantum computing /Linear Algebra /Linear Programming /Macroeconomics / Economics III / IV) /System dynamics /Thermodynamics /Complex systems/equilibrium /Mathematical Programming /Maths/mathematical methods/mathematical models/mathematical skills /Maths for Business / Business Maths /Maths for Economics /Mechanics (any type of mechanics) /Microeconomics (inc intermediate / advanced)/ Economics III / IV) /Multi Variate Analysis /Network Science /Number Theory /Optimisation /Probability (including stochastic models/methods (e.g. Markov chain model, monte carlo models)) /Proof / Intro to Proof /Pure Maths /Quantitative Methods /Statistics/Statistical Methods/Statistical Analysis etc /Time Series Analysis /Forecasting / Physics/Physical computing /Electronic/electrical engineering /Electricity and magnetism /Engineering materials /Geotechnical /materials/structural engineering /Analytical chemistry /Simulation /Probability /Computer Science (incl programming/algorithms) /Mechatronics /Data Mining/Data Science/ Data Analytics/business analytics /Management Science /Decision Analysis and Simulation; decision science /Operational research /Derivatives /Econometrics /Financial Modelling /Quantitative techniques (intro/ advanced) /Quantitative Methods /Quantitative Research Methods /Statistics/Statistical Methods/Statistical Analysis etc /Social network analysis /Computational research methods in the social sciences /Any computational methods /Machine learning /Robotics /Experiment (e.g. experimental design, studies or research; control trials) /Research methods in health/medical/biomedical/natural sciences.

For applicants who are currently completing a degree, we understand that their final grade may be higher than the interim grades or module/unit grades they achieve during their studies.

We will consider applicants whose interim grades are currently slightly lower than the programme's entry requirements. We may make these applicants an aspirational offer. This offer would be at the standard level, so the applicant would need to achieve the standard entry requirements by the end of their degree. Specific module requirements may still apply.

We will consider applicants whose grades are slightly lower than the programme's entry requirements, if they have at least one of the following:

  • evidence of significant (minimum of 6 months in a paid role) relevant work experience in sectors such as Digital Marketing, Data Science, Data Engineering, Banking and Finance or roles which require expertise in data analytics or statistics.
  • a relevant postgraduate qualification.

If this is the case, applicants should include their CV (curriculum vitae / résumé) when they apply, showing details of their relevant work experience and/or qualifications.

See international equivalent qualifications on the International Office website.

Months of entry


Course content

The MSc Business Analytics is a professionally accredited, one-year specialist programme for graduates with a bachelor's degree with a substantial quantitative component, and highly qualified graduates from other backgrounds with demonstrable advanced quantitative skills. It will suit graduates or early career professionals who wish to pursue a career in business analytics across sectors such as digital marketing, human resources, logistics, retail, finance, banking, insurance, healthcare, and agriculture.

The programme accreditation is awarded by the Institute of Analytics (IoA), which is the professional body for analytics and data science professionals across the world. Their mission aligns with our vision of developing and promoting the highest professional and ethical standards in the realm of data analytics. By becoming IoA Corporate Partners, we demonstrate our commitment to staying up to date in the fast-evolving field of analytics and data science. This in turn, will help to boost your employability, ensuring you are well-equipped to navigate the fast-changing landscape of analytics.

As well as benefiting from the accreditation, the MSc Business Analytics has been created in partnership with industry professionals from IBM, LV and UCL/IBM Industry Exchange Network. It provides students with the opportunity to work on business analytics projects and offer data-driven solutions to a real-life managerial decision-making problem or challenge, where possible, in partnership with IBM and other private, charity, and public sector organisations.

Students will gain a critical understanding of organisational, societal, and ethical issues in the use of Business Analytics. These issues are crucial for many organisations that seek to provide data-driven services while trying to balance innovation and competitiveness with public trust and corporate social responsibility. Examples of projects include optimisation of resource allocation, people analytics to support hiring decisions, sales forecasting, performance measurement and evaluation, customer segmentation, and sentiment analysis to improve a business strategic direction.

At the end of the programme, students will have learned:

  • technical skills in data preparation (such as identification, extraction, and cleaning of data);
  • the use of statistical and machine learning techniques to perform data mining and predictive analytics;
  • the formulation and execution of statistical and mathematical models to optimise challenging business decisions;
  • the visualisation, interpretation, and reporting/communication of results from statistical analysis.

Students will learn how to perform ad-hoc data analytics in Python and through specialised software and decision support platforms such as Lingo. They will also be offered guidance on how to successfully receive professional accreditation from the UK’s Operational Research (OR) Society as well as other affiliated organisations such as the Alliance of Data Science Professionals.

You will be taught by leading academics whose research tackles the major issues in business analytics. 88% of our Business and Management research is rated as world-leading or internationally excellent (REF 2021), reflecting its impact on shaping policy and practice. Bristol is a vibrant, ambitious, and entrepreneurial city and home to SETSquared, the world's top university business incubator (UBI Global).

Information for international students

See international equivalent qualifications on the International Office website.

Fees and funding

Further information on funding for prospective UK and international postgraduate students.

Qualification, course duration and attendance options

  • MSc
    full time
    12 months
    • Campus-based learningis available for this qualification

Course contact details

Enquiries Team
+44 (0) 117 394 1649