Taught course

Cancer Sciences

Institution
University of Glasgow · Institute of Cancer Sciences
Qualifications
MSc

Entry requirements

A very good degree in Biochemistry, Biotechnology, Medicine or other relevant biological/biomedical sciences. Alternative qualifications will also be considered on a case-by-case basis.

An IELTS score of at least 6.5 with a minimum score of 6.0 in each component (or equivalent qualification) is required for students who do not have English as their first language.

When applying, please include a CV and personal statement that explains how your previous studies provide a suitable background for this programme.

Months of entry

September

Course content

This Masters in Cancer Sciences will prepare you for a career in cancer science, whether you aim to pursue a PhD or further medical studies, or seek a career in the health services sector, in the life sciences, biotechnology or pharmaceutical industries. Our programme takes a “bench to bedside” approach, enabling graduates to work within a multidisciplinary environment of world-leading scientists and cancer-specialists to address the latest challenges in cancer research.

WHY THIS PROGRAMME

  • University of Glasgow is rated in the UK top five and best in Scotland for Cancer Studies. You will be taught by a multidisciplinary team of world leading cancer scientists and clinicians within the Cancer Research UK Glasgow Centre.
  • This MSc in Cancer Science programme is unique in the UK as it delivers integrated teaching in molecular biology, pathology and clinical service.
  • The Cancer Research UK Glasgow Centre brings together scientists and clinicians from research centres, universities and hospitals around Glasgow to deliver the very best in cancer research, drug discovery and patient care. The Centre’s world leading teams have made major advances in the understanding and treatment of many cancers. For more information, please visit: http://www.wecancentre.org/
  • In the first semester, each week is focused around one of the new Hallmarks of Cancer, with the focus on the molecular/cellular biology of this hallmark. A tutorial session will enable you to discuss and integrate your learning from the week. This will enable you to understand how research into the fundamental principles of cancer cell biology can translate to advances in cancer treatment.
  • The aim of this MSc in Cancer Science is to train cancer researchers who can break down the barriers that currently prevent discoveries at the bench from being translated into treatments at the bedside. By understanding the science, methodology and terminology used by scientists and clinicians from different disciplines, you will learn to communicate effectively in a multidisciplinary environment, critically evaluate a wide range of scientific data and research strategies and learn how to make a significant contribution to cancer research.

PROGRAMME STRUCTURE

Semester 1: Hallmarks of Cancer

This 13 week core course aims to:

  • provide you with a critical understanding of the molecular and cellular events that drive cancer development and progression
  • demonstrate how an understanding of these events underpins current and future approaches to cancer diagnosis and treatment
  • integrate the teaching of molecular biology, cell biology, diagnosis and treatment of cancer
  • describe how all these disciplines communicate and work together in the fight against cancer
  • provide you with theoretical training in fundamental molecular and cell biology techniques used in cancer research

One week of practical training is provided at the start of the course. This course is assessed through a lab notebook, group assessment, critical essay and an exam that focuses on data analysis and interpretation.

Semester 2

In the second semester, you can choose from a range of optional courses, before taking the core course “Designing a Research Project”.

Drug Discovery

In this 3 week optional course you will learn:

  • about the stages of pre-clinical drug discovery, including target identification and validation, assay development, identification, validation and optimisation of a lead compound
  • how to critically evaluate literature on current methods, techniques, and strategies used for drug discovery, and to appraise their advantages and disadvantages for targeting a specific disease

Drug Development and Clinical trials

In this 3 week optional course you will learn:

  • about the key issues involved in developing a candidate drug from late stage pre-clinical drug discovery through to clinical implementation
  • about the clinical components of target validation and disease linkage, the use of pharmacodynamic biomarkers in early clinical trials and the development of companion diagnostics to enable personalized medicine strategies
  • how early stage clinical trials are designed to achieve key milestones in early drug development including proof of mechanism, proof of principal and proof of concept
  • how statistical, clinical and regulatory considerations influence study design

Viruses and Cancer

The aim of this 3 week optional course is:

  • to provide you with a critical understanding of the cellular and molecular mechanisms by which viruses contribute to oncogenesis, knowledge about how viral infections can be diagnosed, treated and prevented and insights into strategies used in cancer research

Diagnostic technologies and devices

In this 5 week optional course you will:

  • will appraise the diverse modern technologies available for diagnosis of infectious and non-transmissible diseases
  • work in small groups to critically research the limitations of current diagnostics for a selected disease, devise a new diagnostic device or test that would overcome these limitations, and present your findings

Technology transfer and commercialisation of bioscience research

In this 3 week optional course you will:

  • evaluate the technology transfer of bioscience research and the commercialisation of research ideas.
  • working in small groups, you will design and evaluate a market research strategy and business plan for a small company planning to commercialise a recent bioscience discovery

Current trends and challenges in biomedical research and health

In this 3 week optional course you will:

  • have the opportunity to research a current topical issue or challenge of your choice in biomedical research or health. You will select an area of recent global or national importance, and working in groups, will plan and perform research of the scientific background of the issue, analysing and synthesising the available information to draw conclusions, and/or develop possible solutions

Frontiers in Cancer Sciences

This 5 week optional course aims to:

  • provide you with a critical understanding of current successes and challenges in cancer diagnosis, prognosis and treatment
  • demonstrate how translational research can be used to address critical unmet clinical needs
  • explain the principles and challenges of therapy resistance, residual disease, dormancy and relapse after treatment, biomarkers and ‘omics’ approaches
  • show how recent success stories can help in the development of new treatments for other cancers
  • explain the need for clinically relevant in vitro and in vivo tumour models, for bio-repositories, and for cross-discipline working

Omic technologies for the biomedical sciences: from genomics to metabolomics

In this 5 week optional course you will:

  • develop a critical understanding of a range of modern “omics” technologies and applications
  • learn about genomic, transcriptomic, proteomic and metabolomic techniques, and the analytical approaches that can be employed to examine the data output from these approaches
  • have the opportunity to develop and demonstrate your understanding and proficiency through the critical analysis of real data sets

Designing a research project: biomedical research methodology

In this 6 week core course you will:

  • develop a critical understanding of research methodology as applied to modern biomedical research
  • have the opportunity to appraise the different types of scientific research, and to examine critically the different steps within a research project
  • develop your understanding and competence through the development of the study design for your research project, including hypothesis setting, literature review and project work plans

Semester 3

Bioscience Research Project

In this 14 week core course you will:

  • have an opportunity to perform a piece of original research to investigate a hypothesis or research questions within the area of cancer research. The project may be “wet” or “dry”, depending what projects are available
  • develop practical and/or technical skills, analyse data critically and draw conclusions, and suggest avenues for future research to expand your research findings

Note: students must have a minimum of grade C in semesters 1 and 2 in order to proceed to the research project.

Information for international students

Please refer to our website for more information.

For applicants whose first language is not English, the University sets a minimum English Language proficiency level.

International English Language Testing System (IELTS) Academic module (not General Training)

  • overall score 6.5
  • no sub-test less than 6.0
  • or equivalent scores in another recognised qualification:

Common equivalent English language qualifications

All stated English tests are acceptable for admission for both home/EU and international students for this programme:

  • ibTOEFL: 90; no sub-test less than:
    • Reading: 20
    • Listening: 19
    • Speaking: 19
    • Writing: 23
  • CAE (Cambridge Certificate of Advanced English): 176 overall; no sub-test less than 169
  • CPE (Cambridge Certificate of Proficiency in English): 176 overall; no sub-test less than 169
  • PTE Academic (Pearson Test of English, Academic test): 60; no sub-test less than 59
  • Trinity College London Integrated Skills in English: ISEII at Distinction with Distinction in all sub-tests

For international students, the Home Office has confirmed that the University can choose to use these tests to make its own assessment of English language ability for visa applications to degree level programmes. The University is also able to accept an IELTS test (Academic module) from any of the 1000 IELTS test centres from around the world and we do not require a specific UKVI IELTS test for degree level programmes. We therefore still accept any of the English tests listed for admission to this programme.

Pre-sessional courses

The University of Glasgow accepts evidence of the required language level from the English for Academic Study Unit Pre-sessional courses. We also consider other BALEAP accredited pre-sessional courses:

Fees and funding

UK students
£7700
International students
£21000

Qualification and course duration

MSc

full time
12 months

Course contact details

Name
MVLS Cancer Sciences
Email
mvls-cancersci@glasgow.ac.uk